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Some New Results Conceming Random Sets and Fuzzy Sets

I. R. Goodman
Naval Ocean Systems Center
San Diego, CA -

This paper is a ocontinuation of past work showing direct cannections between

fuzzy set theory and classical probability theory through the use of random sets.
More specifically:

(1)

(2)

(3)

The Negoita-Ralescu Representation Theorem cannecting fuzzy and flou sets has
been extended to characterize those probability spaces which admit arbitrary
prcbability distributions (and arbitrary stochastic processes, more generally)
as the class of all nan-atomic probability spaces.

A nunber of characterizations has been obtained for the ocne-point coverage

equivalencies of random closed intervals with fuzzy sets. This includes the
classes of translatian type random intervals, statistically independent end-
point and centering parameter random intervals, and nested random intervals.

It is shown that all nested random sets must be of the same form as the canmm-
ical random set: SU(A) = cbg' (U,1], where U is wmiformly distributed over
[0,1], and as a cansequence of this, there is only one nested random set ane-
point coverage equivalent to any given fuzzy set A, namely, SU(A).

The entire solution class for the ane-point coverage problem fcr any given
fuzzy subset A of a finite space X is characterized by being in a ane-to-one,
oanto correspondence with a particular convex, closed hyperplane-bounded
subspace R(A) of R?°, where .a,2cardinality of the class of all ordinary sub-
sets of X with two or more distinct elements of X. This result is extended to
the finite multiple-point coverage prcblem.

Entropy is introduced as a criterion for ordering random sets within the class
S(A) of all cne-point coverage equivalent random sets to a given fuzzy set A.
It is shown that the maximal entropy random set in S(A) is T(A), the randam
set whose menbership function process is a statistically independent zero-cne
process with Pr(ch(A) (x) =1) = Pr(x € T(A)) = d>A(x) , for all x € X. n the
other hand, the minimal entropy random set within S(A) is much nore difficult

to cbtain. It is demonstrated that the search for such may be restricted to the
relatively small vertex set V(A) of R(A). In fact, SU(A) and S(A), the

singletan-valued random set corresponding to the random variable over X having
probability function «,‘oA, when I(¢,(x)) over all x ¢ X is < 1, always lie in
V(A). Throwgh a simple example, it is shown that at times SU(A) may achieve
+he minimun entropy, at other times, S(A) may achieve the minimum entropy,

and at other timrs, neither will yield the minimum value.
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Some New Results Conceming Random Sets and Fuzzy Sets

I R. GOODMAN

Command 4 Control Department, Code €11,
Aaval Ocean Systemg Center, San Diego, Califermie 83182

ABSTRACT

N This paper is a continuauon of past work showing direct connecuons between fuzzv set
theorv and classical probability theory through the use of random sets. This includes char-
acterizations of random intervals one-point-coverageequvalent to {uzzy sets. determination of
all nested random sets equivalent to fuzzy sets. the solution of the one- and multiple-point
coverage problems for random sets :n finite spaces. and the use of entropy for ordenng random
sets within the class of one-point-coverage-equivalent ones for anv given fuzzy set. Finailv. a
connection between random vanables. random sets. and (uzzy sets is pointed out.

INTRODUCTION

Iy

S

During the past few years a gumber of investigations has been carried out
directly connecting fuzzy sets with random sets [1-4]. In addition, there has
been work in interpreting fuzzy sets through subjective probability, svhere in
effect, the membership function value ¢,(x) of the fuzzy set A at nt x 1S
considered the same as the probability of a zero-one random variable al{aining
the value one, which is approximated by an expenment {5, 6]. Alsp’ it is
appropriate to meption investigations into structures which generalize both
fuzzy set and probabilistic concepts [7-9] and the extensive work concerning
fuzzy probabilities and fuzzy random variables (10, 11]. However, in this paper
only the first-mentioned connections between fuzzy sets and probability will be
considered. .

A SUMMARY OF THE BASIC RELATIONS BETWEEN FUZZY AND
RANDOM SETS

1. Given any space X and any fuzzy subset 4 of X with membership
functuon ¢, : X — {0.1], there exist (in general, many) random subsets $( 4) of

T Elscyier Saience Publistung Co . Inc 1984
52 Vanderbilt Ave.. New York, NY 10017 0020-0255 /84 /S0 00
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94 [. >.. GOODMAN
X such that §(A4) and A are one-point equivalent, i.c.,
o,(x)=P{xeS(4)), alxeX. (1)

(See [1], (2].) By a randomn subset § of X is meant the measurable set-valued
mapping S:  — P(X) for appropnate choices of probability spaces (2, 9, Pr)
and (P(X),¥.,PreS '), where € is a o-algebra over some cubclass of the
power class #(X) of X which contains at least the classes ¢ ,, of all sets
containing x, for each x &€ X. (See also [12].) Two simple examples of one-
point-equivalent random subsets of X to a given fuzzy subset 4 are: S, (A)= .
¢, "({U.1]), where U is a random variable uniformly distr%uted over {0.1}; and.
T(A). where the membership function ¢r,,. a random {unction which is
zero-one valued, is such that ¢ ,,(x) for index x € X is 2 mutually stadstically
independent zero-one stochastic process with

Pr‘(‘bru,(x)=l)=¢4(x), aﬂxE{’._ (2)

In general, S, (A) and T(A) are disunct {unless A4 is an ordinary subset of X, in
which case necessanly S(A) = A}, the former being a nested random set while
the latter is highly disconnected. (See {1}, (2] for various properties.) Note that
the mappings S, (), T(-): F(X) — R(X) are injective, where F(X) is the
class of all fuzzy subsets of X and R( X) is the class of all random subsets of X.

2. Conversely, given any space X and random subset S of X, there is a
unique fuzzy subset 2(S) of X such that #/(S) and S are one-point-coverage
equivalent: namely, &/(S) defined by

$us)(x) =P(xeS) (=Pros7'(¥,,)). allxex. (3)
3. Combining results 1 and 2. the one-point coverage mapping & : #( X)
— F(X) is many-to-one surjective. Recently. some of these results have been

used independendy in randomized test and confidence region theory [13].
4. S, and T are special cases of mappings of the form

FX F(X)~ X (X)) (well-defined joint random sets). (4)

FE-¥) y€J

where marginally &1 F (X ) — #( X)) is such that for any {4, € F (X)), &(A4))
1s one-pownt-coverage equivalent to 4,, wntten from here on as

.SP(A/)EAI_ (s)

for all e/ I o:x ,P(X)—P(X) is an ordinary set operator,
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(® X, e, F(X)=F(X) is a fuzzy-set operator, and &’ is as above, a
natural question is to determine if (*) and « are in an isomorphic-like relation
relative to % and =, ic,

(®2=((02)= «¥(2). alBe X F(X). (6)

€

Investigations into the conditions when such relations hold for various classes of
ordinary-set operators, fuzzy-set operators, and mappings ¥’ have been car-
ried out (2, 4, 14]. These results provide motivaton for the choice of fuzzy-set
operator or operators which extend ordinary set operators. For example, let

J={1,2}, and let U, and {, be two random vanables each uniformly disinb- -

uted over (0,1] with joint distnbution X to be specified. Then define & =
(Sy,(+): Sy, (+)) for K = K,, corresponding to U, = U,. and for K = K, corre-
sponding to U, and U, being statisucally independent. Let N be ordinary
intersection with X, = X, = X arbitrary fixed. Let @ be fuzzy-set intersec-
tion defined as follows for ; =1,2:

¢a@((x) "mm(‘pa(x)»‘f’c(x))- (7)
¢B@(‘(X) = ¢5(x) o (x). (8)
for all B,C e F(X) and all x € X. It then follows that and M are in an
isomorphic-like relation with respect to .S’K’, and =, forj =1.2. (There are

many other possible definitions for fuzzy-set intersection which lead to isomor-
phic-like relatons with ordinary intersection. See {3}.)

FURTHER RELATIONS BETWEEN RANDOM SETS AND FUZZY SETS

It is convenient first to establish the following necessary and sufficient
conditions under which a uniformly distributed random vanable may be used.
in terms of nonatomic probability spaces and other critena

THEOREM 1. Let &= (Q.2,Pr) be a probability space. Define a flou class
& = (A, ) e 011 S 2D 10 be a nested class of sets which are nonincreasing inclusion-
wise with respect (o the index q and which are continuous with respect 1o union and
intersection relative 1o the index a. Then the following statements are equivalent:

L. There is a random variable U §} — (0,1} uniformly distributed. .
2. For any probability distribution function F over R there is a random variable
V. Q — R such that V has probability distnbution function F
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3. There is a flou subclass & = (A,), ¢ 0 of D such that for all a€[0,1],
Pr(A,)=1-a. (9)

4. #° 15 a nonatomic probabiliry space.

Proof. 1 implies 2: Let
V=F'(U). (10)

where the pseudoinverse F' is defined by

F'(1) =inf F'(inf{ x|1 < x € range( F)}), (1)

whence for all r €10,1}, x € R,
F'(ry<x iff 1< F(x). (12)
1 imphes 3: Let
A, =U Y[a.1]) foral a€]0,1}. (13)
3 implies 1: For all w € Q, define '
U(w) =sup{alac (0,1} & weAd,)}. (14)

which implies for all a € [0,1]

P{U™'({0,a])) = PR\ A4,) = a. (15)

4 imphles 3: Use, e.g., the standard result {15, pp. 168, 174).
3 unplies 4: Suppose there 1s an atom B € 2. Then use the continuity of
probability to obtain desired contradiction. L]

Thus, from now on, & is assumed to be some fixed nonatomic probability
space.

Let 4 € F(X) be arbitrary. Consider now the mapping S, without regard
to the random vanable U. That is, define the family of all level sets associated
with A4 as

lcv(A)=(¢;'({u‘l]))uE[0” (16)
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and Zv( X) as the collecton of all level families lev( A) for all 4 € F(X).
Operations between level families are defined componentwise in terms of
ordinary set operations at each level a, including complements, intersections,
unions, subset relations, functional transforms, projections, etc. Independent of
the random set approach discussed earlier, Negoita and Ralescu [16f have
developed 1somorphic relations for many of the operatons defined over %Gv( X)
and fuzzy-set operators, analogous to some of the isomorphic-like relations
developed within a random set context as mentioned in point 4 above. These
results may be combined into the following theorem:

THEOREM 2 (16, 1]). Let X be any fixed space, and define F¥(X) as the
collection of all flou classes of X: & =(A,).ci01)C P(X) with Ay = X. Then

1. FL(X)=%Lv(X), where for any o € FL(X),
& =lev(B,), B,e F(X), (17
where

¢5_(x)=sup{alac[0l]&xe€A4,]}, all xe X. (18)

Conversely, if A € F(X), then lev(d)€ FL(X).

2. Let the collection of all nested random subsets of X be denoted by A" R( X).
where it is assumed that for any S € FL(X), range(S) € FL(X). Then F(X),
FL(X), and A R(X) are all bijectively related as in the following diagram:

FL(X)

o |

ST~ R X)

tsomorphisms or isomorphic-like relanions hold for all of the abovementioned
operations defined over each of the three spaces.

Proof The only thing new to show is that §, is sunjecuve. Let S be any
nested random subset of X with range(S) = (A,), . 0.; € FL(X). Thus, there
is a random variable ¥: {2 —[0.1] such that for all we Q. S(w)=A, ., By
part 1 of this theorem,

S(w) =9,

ranger $ 1

([V(u),l]), all we Q. (19)

Then leting F be the probabilitv distnbuuon funcuon for ¥ and using the
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proof of Theorem 1, for any x € X,

x€S il V<o,

(x) iff F'(U)ses_, (2)

g 51 I
i Us F((bawh(x)) ff xe€S,(C). (20)

where
oc(x)=F(es__ (¥). allxex (21)
Hence, S = S, (in distnibuton). -

An immediate consequence of Theorem 2 is that for any 4 € F ( X), there 15
a unmique oested random subset of X, S(A) = A, namely, S(4) =5, (A).

THE ONE-POINT RANDOM SET COVERAGE PROBLEM

Returning to points 1-3 in the secuon after the introduction. a basic question
may be posed: Given A € F(X), what other random subsets J of X exist
besides S, (A) and T(A) such that S = A4? Some results are given in {4], [2],
where a family of random subsets of X is obtained, which includes S, (A4) and
T(A) as members, all one-point-coverage-equivalent to a given 4. However, this
does pot exhaust all possible such random sets. The problem of determining all
possible random sets one-point-coverage equivalent 10 a given fuzzy set is called
the one-point-coverage problem. (The problem of determining all random sets
m-point-coverage-equivalent to a given fuzzy set is treated in the following
section.) Let

F(A)=(S|SeR(X)&A=S). (22)

Suppose, from now on, that X is any space with n = card( X) > 3. and order
all 27 sets C€P(X) by the order <, where if card(C’) < card(C*) then

C’<C”, and if card(C’) = card(C”') we determine an arbitrary but fixed and
consistent order also. The notation

(T)z(_m—_% s y=01.....m,
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will be used, and denoting vector and matrix transposes by superscnpt Tr, we
define

x\T.',-(1.1(‘;),2.1(';)....,(,1—1)-1{5)) (1bya,). (24)
€ = (3c(x)) cemixs amicrnz (4, by 1), all x€ X,
€= (£.) cx (a,byn): (25)
YP(S) = (PAS=C)cervrcuucro2 (a,byl). all S&R(X):

(26)

)} ¢,(x))—1,o)_

x€ X

H(A) = (04(0) e (YD), (A) = max|
all A€ F(X) (20)

THEOREM 3. For any fimte space X (with notarion as above) and any
Ae F(X):

1. We have
LAY ={SISeR(X) & yP(S)eR(A)], (28)
where
R (A) = { W|W € R* sausfying (30)-(32)}. (29)
for
r(A) <]t W (30)
v(A) >8] W (31)
0, <W. (32)

2. R (A) 15 a closed convex region in R~ having in general 1 = n +a,=2"
hyperplane bounds with an uncountable infinity of possible elements y'*'(S) in 1.
or equivalently, § € & (A4).
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3. There 1s a byecuwe correspondence berween \(A) and R (A), where for
any given W € R, (A), S € $#(A) 15 uniquely determined (in distnbution) by

7(2)(5) - w' (33)
Pr(S-Z)—I— Z ¢4(X)+‘(Tr:\'w' (34)

x€e X
PS=(x))=¢,(x)-1-W, all x€ X. (35)
]

Define now the vertex set ¥ (A) of #,(A) as the set of all W € X, (A4) such
that equality nolds in Equations (30)-(32) for a, unearly independent columns
of (x.,,.§.,,. 1, ). There can be at most

)5

" \n+l/
vertex eiements. It also follows that for all A € F(X)-

(a) We have
range( Sy (A)) = { o7 ([ (1)) =1 r) (36)
where
range(¢,) = { y,(A)..... x(A)}).  O<y(4)< - <y(4)<l 137)
Hence,
P{S,(A4)=C)

[y/(A)—y/Al(A), it C=¢ ([ 5 (4)1]) for y=1. ..r.

= \ ,Vo( A) - Ov
0 » otherwise,

(38)
and Y9 (S, (A4)) € ¥,(A). where
‘(T:)'Vn)(Su(A)): Z ¢4(_r)>7(/~l), (39)
e Y
1YV (A)) = v(A) (40)

(b) mn,4)z=6)-( I vp‘(r))( 1l [1—¢,(,\-)]). al CeP(X,

€ re YNC
(41)




RANDOM SETS AND FUZZY SETS 101

and y'(T(A) e wienor(# ( 4)) in general, where
ST = [ X o)1+ [T [1-6u(0)] 2 r(4) ()
TE X xe X
and

YT =e(x) (1= ] A[l—m(.v)l)sm(x)- all xe x

veE XN
(43) .

(¢) 1t should be noted that the condition given in Equation (30) is super-
fluous 1ff

Y e.x) <, (44)

1€ XY

1.e., o, 1s either an ordiparv probability function {equality holding in (44)] or a
deficient probability function [inequality holding in (44)] over X.in which case
a random set S'(A) € ¥ (A), where $°(A) may be identified with a random
vanable over X having ¢, as its probability function (possibly deficient). Thus

Y?(S(4)) =0, . (45)
and hence y“"(S'(A))G ¥, (A). Also,
PS'(A)=0)=1- T ¢,(x). (46)
- ¢
PrS(4)={x})=0,(x). allxex (47)

THE MULTIPLE-POINT RANDOM SET COVERAGE PROBLEM

For any integer m » 1, define #,..,{ X) as the collection of all nonvacuous
subsets of X with cardinality < m Then define

Fa XY= {f1/ 2 (X) ~[0.1] & there is an S € #( X) such that
S(CYy=PH{CCS),all Ce® (X))

S AVAE SNE 9! ~[0.1)}. (48)
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with, in genoeral, strict subset inclusion holding above. That 1s, there are
functions f: &, —[0.1] which are not the m-point-coverage function of some
random subset of X. A simple example of this is generated for the case m = 2
by [irst noting the basic constraints for any random subset S of X and any
x, y € X:

max(Pr(x € S)+P{yeS5)-1,0)<Pr{{x,y} CS)
<mo{P{x€S),P{yvesS)) (49)

and then choosing, e.g.. any such / with at least some x, y € X such that
min{ /({x})./({v})) </({x.y}). (50)
This situation coantrasts sharply with the case m =1, where indeed
F(X)=F, (X)) ={/1/:2,,(X)~[0.1])~ (51)

abusing notation somewhat in identifying A with ¢, for any A € F( X).
In the following discussion, X need not be finite nor even discrete. Clearly,

Fn(X)2 - 2F (X)=(F,(X) (52

7=1

§

and if for any f € F_ (X)

Nt

{(my

(f)={SISEXX)&f(C)=P{CCS) alCeP

{m)

(X)), (s3)
then

LU =L () 25,() 25,02 2%..(/) (54)
Letting #( X) be the class of all finite subsets of X,
FoAX)Y={f1f F(X)—~[0.1] & there s an S € R( X) such that
JICYy=PCCS)alCe £(X)) (5%
Define also. for any / € F_ (X)),

S )= (SISERX)&/(CY=PHCCS)all CE F( X)) (%)
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Then gathering all of these definitions together yields the following theorem:
THEOREM 4. For any space X:

1. ZF (X)) is the class of all doubt measures over F( X). (See (1], [17])
2. For any integer m > 1, R( X) is disjointly partitioned as

x)=- U &/ (57)
/€ F (X}

3. Forany { € #

toc}

( X), there s a unique S, € A XY such that
S () =S} (38)

and the converse holds if for each S € R( X) we determune the coverage funcrion fg
by

[s(C)=PHCCS), allCeg(X) - (59)

4. F _(X). R(X), and ¥ (X), the class of all zero-one stochastic processes
over X, are all in a bijective relationship as follows:

*, Z(X)

F o (X)
\ﬂx)

where for any S € R(X) we have ¢(S) = (¢s(x)), ¢ y. and p is derermined by
the Kolmogorov extension theorem applied 10 the relations below:
5. Forany V=(¥{(x)),ex € ¥ (X) and anv C, D € #(X) diyjoini,

®

P & (M) =1)ef & {V(x)=0]>)= ¥ (-D)®5 L (CUK)

\ ve t€D

KcD
(60)
where [ € F _ (X} s gwen. for anv B € #(X), by
/(B =P & [V(x)=1]] (61)
€8
(Sece {14]) »

Thus in terms of degree of coverages. F(X) and A(X) represent the
apposite extremes
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Returning to the case for X finite, let m > 1 be arbitrarily fixed with
card( X) = n 2 3. Define for any S € #(X), recalling the total order defined
over P( X),

Y(M‘l)(S)_(PT(S-C))(Ef(X).cardlC))M'l (a,,(,,, byl)' (62)
R Y (63)
wn, X )

€ ,(X)={C|BCcCeP(X)&card(C) = ).
alCe®(X), 0<y<n. (64)

Also. define for any n>m>r5>0 and all fe# (X) and Ce
P(X). card(C) = r,

v, o f/.C)=f(C) for s=0, (65)

s

v,.,(f.C)=-f(C)+Z((—1)’ Y /(B)). for s>1, (66)

t=] Be¥.,.,

2 if jiseven,

(é)’a{s ) is odd. (67)

THEOREM 5. For any finite space X, with notation as above, for any f €

y(m(x)‘-

1. We have
S ([)={SISERX) &y N(S)eR,, ()] (68)
where
Ry ([) = {WIW € R* - sausfying (70),(71)} . (69)
with

u (- m -1
(Vv (f.ON2), ¥ [(I o ) )3 WB} (70)

/ Be,

r=m s
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for all C € P(X) with card(C)=m— j, forj=0,1.2,.... m,

W, 20, all Be P(X) withcard( B)>2m+1, allf€F,  (X), (1)

and where
W=(Ws)serx)cardBrome1 ER . (72)

PR ¢

(f) s a closed convex region in R~ having, in general.

)
—
”n
a".m+ z(’)az
=0

hyperplane bounds, and thus, in general, there ¢ an uncountable infimity of
possible Y™ " V'(SY's in it, or equivalenily S € &, ,( f).

3. There is a bijective correspondence berween &, (f) and X, (f). where
for any gwen W e R (f). S€S,,  (f) is uniquely determined by

YmIR(S) =W, (73)

PHS=C) = v, (£.C) (-1 L [("”’””) > WB}

fmmel J BE¥ (X)
(74)
for all C € P(X) with card(C)y=m — 4, j=0,1,... . m.

Qutline of proofs for Theorems 3 and 5. First obtain Theorem 3 by simply
extending the basic identity in Equation (1) in terms of Pr(S = C)'s together
with the standard probability constraints, and solve in terms of y¥(S).
Theorem $ is obtained by a tedious induction. The key computational identity
useful in the proofs is

> > /(D))-(’”’) S oKD (79

Bed, (X1 De¥, (X) k=1 De€, (X)

forany [ P(X)—~ R, j> k>, and any C € P( X) mith card(C) = /. | ]

USE OF ENTROPY AND QTHER CRITERIA FOR
COVERAGE PROBLEMS

Another basic problem associated with fuzzy sets, or more generally, mult-
ple-point coverage functions / € % _ ( X) and random sets S € %, (/). s the
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determination of meaningful cniteria for ordering in some sense the elements of
&, {f) 10 terms of “best” representing f. Among natural critena. should be
mentioned the expected n-volume if X C R", the gxpected cardinality if X is
finite, and the entropy. Consider first volume and cardinality. The [ollowing
important result must be taken into account. This is based on an earlier result of
Robbips {13] which was also later independently rediscovered by Pratt {19], and
in turn used by Hooper [13] in demonstrating that most common figures of
ment for randomized test procedures and randomized confidence sets involve
the random sets determining these procedures only through their one-point
coverage functions.

THEOREM 6 (18, 19]. Let m be any positive integer, X anv space. and
S € R(X). Then (assuming the usual measurabiliry conditions), letting fs be the
coverage function of S [see Equation (59)]:

1. If XC R” for some fixed positive integer n and vol, denotes n-dimensional
Lebesgue measure, then for any m > 1

E([vol (™) = [ fil{xioxa))de, - dx, (76)

2. If X s a finite space,

E(fcard($)]7)= XX fs({x....x.}). (17

(x).. ..x,€X)

Proof. Let g: @ X € — R, where range{S)C ZCP(R"), ¥ CR"™, and let
p: & — R be a measure relative to the measure space (4.9 . ). Then apply
Fubini's interchange theorem to the integral of g with respect to the joint
measure Pre S7% X u, and specialize for g( B, x) = ¢z(x,) - ¢5(x,). BE XD,
x=(x{,...,. x, )E¥, with ¢ and & chosen accordingly. when first u = vol,,
(Lebesgue measure) and then p = card (counting measure). ]

Thus, for any given f € %,,,,(X) we have E{[vol,(S)|') =constant,, (=
| B m, regardless of the S chosen from %, ( X). Thus another cnterion must
be sought which 15 sensitive to vaniable S € & | ( X).

Counsider now entropy as a possible cnterion. In this paper only the case of
base space X finite will be treated. For any § € #( X). define the entropyv for §
analogously to the usual definition for probability funcuons:

En(S)= Y [-PHS=C)logPrS=0C)] (78)
Ce Py

The results of Theorem 4, past 4. specialized to thus case, vield dually that §
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may be identified with a random vector ¢; over the space (0.1}, assuming
card( X) = n.

THEOREM 7. Let card( X) = n. Then for any A € F( X)

sup (Ent(S)) = Z {—¢4(x)log¢d(x)—[1—¢A(x)]log[l—¢4(x)]},

S e SiA) 1€ X
(79)
occurring umiquely for S = T(A).

Proof . Either use the fundamental information-theory inequality applied to -
¢ —which 1s equivalent to a specialization of the well-known result that given
any marginal probability functions, the joint probability function maximizing
the entropy corresponds to the marginal random variables being statistically
independent—or specialize the exponential family characterization of maximal
entropy to this case (see, e.g., Jaynes (20] for the general case). ]

Ono the other hand, the minimal-entropy problem hére poses more diffi-
culties. It can be shown that:

THEOREM 8. Ler card( X) = n. Then for anv A € F(X)

inf En(S)= min  Eny(S). (80)

S €5(4) Y S)e ri(A)

Proof. By Theorem 3, part 3, the minimization problem reduces to the
routine minimizing of the sum of a strictly convex function (— x log x) of linear
combinations of components of y'2(S) over the region R, (A). |

Even though [see remarks (a) and (c) following Theorem 3] y2(S,(A)) €
¥ (A), and if T, ¢ ,9,(x) <1, then S’(A) is well defined with y¥/S’(4)) €
¥ (A). it is not always true that the global minimal entropy occurs for either
one. A simple example illustrates this. Let n=2 with X ={x,, x,}, and
A€ F(X)wmth ¢,(x;)< ¢,(x,). Let h(x)=— xlogx, all x, and define y, =
$,(x;) and y, = ¢,(x;). Finally, let G(A) = infs . o, 4, Ent(S). Then:

(i) If r(A4)=0and y,>!, then
G(A)=h{(y)+h(y,)+h(1-p —y). (81)

occurnng uruquely for S = 57(A4). (See (45)-(470.)
(i) If either 1(A4) =0 and y, <} or 7(4)> 0 and y, >}, then

G(A)'h(."x)"'h()’z”.V|)+h(1—.yz)- (82)

occurnng uruquely for S = 5. (A4).
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(i) If 7(4)> 0 and y, <}, then
G(A)=h(1=w)+h(l=y.)+h(y + y, - 1), (83)
occurring uniquely for § = S”(A), where S”(A) is determined by

PAS“(A) = {x)) =1=y.  PAS"(A)={x;})=1-p,
PS7(A) = X) =1(4). P S"(A4)=2)=0. (84)

Extensions of the entropy problem to multiple-coverage functions and gen-
eral spaces X have yet to be addressed.

ONE-POINT-COVERAGE FUNCTIONS AND RANDOM INTERVALS

An important class of random sets is the random intervals 1n this section the
one-point coverage problem is specialized to the case where the base space
X =R, A€ F(R), and ¥,(A) is replaced by a more restrictive class &, (4. 2).
the class of all S € 2 such that S = A, for vanious classes 2 € X(R) of random
closed intervals of R.

Define first 2, as the class of all randem closed intervals and 2, as the class
of all random closed intervals § wAth P(S =@) = 0. Then:

1. There is a natural identification between 2, and the class of all bivanate
random variables
14
z-(,)

over the upper balf diagonal plane in R?. and between 2, and the class of all
random variables over R?. (See [21] for related results.) From now on. let
S = [V, W] denote a random interval with ¥ and W r.v.'s over R: denote the
tnarginal probability distribution function for ¥ by F|. that for W by F,, the
joint probability distribution function by F. etc. The conventon [a.b]=@ for
a > b sl be used.

2 For any 4 € F(R), we have S =[V. W)€ & (A.2)) ff

é,(x)=Fix)-F(x, x). al xeR, (85)

the solution of which for F, and F in terms of ¢, may be complicated unless ¢,
1s further specified.
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3. Letting 2, be the class of all random intervais § = [V, W] with V and W
statistically independent, we have

Pr(S#QJ)-/

x €

RFA(X)sz(X)- (86)

and for any 4 € F(R), we have S = [V, W]€ ¥ (4.2,)iff
¢, (x)=F(x)[1- F{(x)]. alxeRr, (87)

which implies that log ¢, is of bounded vanation with im_ _ . oP(x)=0.

4. If A€ F(R) is such that ¢, is unimodal (which will be taken in the sense
that possibly a neighborhood of modal points exists and continuity from the
right holds) at some x, (say) at which ¢,(x,) =1, then S =V, W] € & (A4.2,).
where

o, (x) ¥ xgx , /0 T x<x
R(o= {80 D Fenel . el
X3 g 1-¢,{x) if x2x,
(88)
5. Let 2, be the class of all random intervals S =V, W] with V and W
staustically independent and identically distributed. If A4 € F(R), then
F(A,2,)+2 iff lim, ., ¢,(x)=0 and ¢, is unimodal at some x, with

é.(xo) <}, in which case S (A4,9,)={S(A)}, where S(A)=[V. W] is de-
termined by solving Equation (87) for F, = F, in terms of ¢,:

N T1 (N I RO
l ’ §{l+[1—4¢4(x)]”2} if x> xq.

6. Let 2 be the class of all nested random closed intervals. Then using
Theorem 2,

2,={S . (A)|Ae F(R) & ¢, is continuous and either unimodal,

ponincreasing, or nondecreasing over R} . (90)

where as usual U 15 a fixed random vanable uniformly distnbuted over (0.1].
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Also, for any 4 € #(R) with ¢, continuous and either unimodal. nonin-
creasing. or nondecreasing. S(A.2,) = {S,(A))}, where it should be noted
that

(~cc.supe, '(U)] if ¢, is nonincreasing,

SU(A)-{ (91)

[inf¢;(U). + 0] if ¢, is nondecreasing.

In a related vein, note that if ¢, is any probability distnbution function over
R corresponding to random variable Z say. then Z can be identified with
¢, (U) (see Theorem 1), S, (A4) ={Z. + ), and

o (x)=P{Z<x)=P(xe[Z +x)). alxeR. (92)

Two more 1nteresting classes of random intervals remain to be discussed.

THEOREM 9. Ler 2, denote the class of all fixed-length random closed inter-
vals. Ler A € F (R). Then (A, 2,) # Q iff there exists a probability distribution
function F, and a positive real constant b, such that for all x € X,

¢A(X)HE(X+bA)—FA(X_bA) (93)

iff d, is integrable over R, where we define

Zb‘-f ¢, (x) dx (94)

x€ R

and F, swheee

k

F;(X+(2k+l)b4)= Z ¢A(X+2/b4)‘
J= -
al/xG[O.Zb,]. k=0,+1.+2,.... (9%

15 a leginimate probability distribution function, 1n which case &, (A. 2,) = { S(A)).
where

S(A)={V-b,.V+b,). (96)

where V 1s a random variable having probabilitv distribution funcnon F,. s

THEOREM 10. Ler 2, denote the class of random closed intervals of the form
S=[V-W.V+ W, where Vs a random variable over R stansticallv indepen-
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dent of random vanables W, and W, jointly defined over R* x R~ . Then for any
AEF(R) F(A.2,)+0 iff

4’4"]4@6,4' (97)

where f, R — [0.1] s unimodal at 0 with {,(0)=1, im, _, _ f(x)=0,G, is
some probability distribunion function over R, and ® denotes the convolution
operator. in which case S(AY=[V - W, . V+W,]€ ¥ (A.2,). where V has
probability distnbution function G,, W, has probability distribution function
1= f.(—") over R, and W, has probability distribution function 1 — f,(-) over
R, wuh W\, W, jointly arbitrary and statistucally independent of V. B

It follows, e.g., from [22], that any 4 € # (R) for which ¢, is uniformly
continuous and integrable over R may be arbitrarily uniformly closely ap-
proximated, in the one-point-coverage semse, up to some scalar multiple, by
some S in 2,. (Approximate ¢, by ¢-f(a) G, where ¢ = ¢, /[(27)/%a], ¢, =
Ji ca®s(x)dx, and f = (27)"/2af,, f, being the probability density funciion for
Gaussian distnibution N(0, 6?).) - =

A CONNECTION BETWEEN FUZZY SETS. RANDOM SETS. AND
RANDOM VARIABLES

So far in this paper, connections have been established between the member-
ship functions of fuzzy sets and the one-point coverage functions of random
sets. Recently (23] it has been shown that random vanable evaluation funcuons
may also be directly related to membership functions and one-point coverage
functions. This result is restated.

If Y is any space of elementary events and @ € P(Y) is any collection of
compound or elementary events for a random vanable V over Y (1e., 4 C &,
the o-algebra over Y for ¥), then the function g, : @ — [0,1], where for any
B € 2 we have g, (B) = Pr(V € B), is called the evaluauon funcuon for ¥ over
the event collecuon 2. Recall the notation f; for the onme-point coverage
functuon for any S € @( X) for any space X.

THrOREM 11 (23]

1 Let X be anv space and S € R( X). Then X may be identified as a collection
of events B for some random vartable V over (sav) Y such thut

S=%,,, (98)-

and whose evaluanon function over ® 1s the same as f.
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2. Let V be any random vanable over (say) Y. and @ any collection of events
for V_Then, letung X = @ and defining S by Equation (98), the evaluation g, for
Vover @ coincides with f,.

3. Let X be any space, and let A € F(X) be arburary. Let S € R(X) be
arburary with S € &, (A), such as S, (A), T(A), for example. Then applving part
1 above, X may be identified as a collection of events R for some random variable
V over (say) Y such that Equanon (98) holds and &,. fs. and g, all coincide.
That is, any fuzzy set s one-point-equivalent 1o the evaluation function of suitably
chosen random vanables over event collections. a

One consequence of Theorem 11 1s a new interpretauon for possibilities, or
equivilently, values ¢,(x) for x € X, where 4 € F(X) is given,through the
membershup function ¢,: X - [0.1]: For any x € X,

Possibibtyof x € A = Poss{x € 4) =Pr{x € S(A)) =P V(A4)€x). (99)

and since the events x € X can also be considered compound or elementary
events for V(A) over ¥ which may well be overlapping and perhaps exhausuve.
possibiliues need not sum to umity when X 1s discrete. However, when—and
only when — ¢, is an ordinary or deficient probability function, possibilities wil}
sum to umty or to less than unity, possibilities and probabilitues cotncide. and
the events for V(A) are all necessaniy elementary and disjoint, with ¥(A4) and
S(.4) also being idenufiable.

The cuthor vishes to thonk: Professor 5. T. Agqwyen, Mew Mczico State University,
Jor potnting cut the papers of Robbins, Pratt, and Rocper, as wll as for wmeful
ocownents; N. C. Mudricn of #.0.5.C. for valuable criticiam; and the IR/IID Office,
£.0.5.C., for {te mepport of this work.
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